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Abstract—Discrete event simulations (DES) provide a power-
ful means for modeling complex systems and analyzing their
behavior. DES capture all possible interactions between the
entities they manage, which makes them highly expressive but
also compute-intensive. These computational requirements often
impose limitations on the breadth and/or depth of research that
can be conducted with a discrete event simulation.

This work describes our approach for leveraging the vast
quantity of computing and storage resources available in both
private organizations and public clouds to enable real-time ex-
ploration of a discrete event simulation. Rather than considering
the execution speed of a single simulation run, we autonomously
generate novel scenario variants to explore an entire subset of the
simulation parameter space. These workloads are orchestrated in
a distributed fashion across a wide range of commodity hardware.
The resulting outputs are analyzed to produce models that
accurately forecast simulation outcomes in real time, providing
interactive feedback and bolstering research possibilities.

Index Terms—Discrete Event Simulation, Latin Hypercube
Sampling, Distributed Execution, Cloud Infrastructure

I. INTRODUCTION

The behavior of complex, real-world systems is often dif-
ficult to predict or fully understand. These systems may be
influenced by any number of internal or external stimuli,
and direct experimentation is often prohibitively expensive,
time-consuming, or simply not feasible. In these situations,
computer simulation is a compelling solution. Specifically, dis-
crete event simulations (DES) model all possible interactions
between entities in a system, making them highly expressive.
To model uncertainty in these interactions, stochastic discrete
event simulations associate probabilities with their events.
However, this expressiveness comes at the cost of increased
computational complexity and prolonged execution times.

Our subject discrete event simulation, NAADSM, [1] is
an epidemiological model of disease outbreaks in livestock
populations. It has been applied in studies of several differ-
ent diseases, including foot-and-mouth disease [2], avian in-
fluenza [3], and pseudorabies [4]. NAADSM is a stochastic
DES: simulations are run many times, with each iteration con-
tributing to an overall representation of the output variables’
probability distributions. Iterations often require several hours
of CPU time to execute depending on how events unfold.

The computational complexity of these stochastic iterations
makes it difficult for planners and epidemiologists to perform
exploratory “what if” analysis that play an important role
in planning and preparedness. For instance, a planner may
make subtle adjustments to quarantine procedures or the
number of vaccines available in order to analyze economic
consequences or changes in disease spread. Each change to
the input parameters requires a new set of iterations to be run.
Dividing the target simulation into several units and executing
them in parallel is a possible solution to this problem [5], [6],
but generally does not enable real-time exploration.

This paper describes our approach for retaining the expres-
siveness of stochastic DES while addressing the weaknesses in
the timeliness of their outcomes. We achieve this by utilizing
voluminous epidemic simulation data to glean insights and
derive relationships between scenarios and outcomes. We then
use this information to create models that can forecast the
results for an entire class of input parameters, enabling our
system to provide real-time answers to exploratory investiga-
tions.

A. Research Challenges

We consider the problem of generating fast, accurate DES
forecasts for a given subset of the input parameter space. These
forecasts are generated in lieu of compute-intensive simulation
runs. Challenges involved in accomplishing this include:

1) Data Dimensionality: Each input parameter represents a
dimension, the number of which can be quite high (ap-
proximately 1800 in this particular study). Furthermore,
input parameters come in a variety of types: integers,
floats, or even probability distributions.

2) Interactive Exploration: The “what if” scenarios in
question must provide immediate feedback during ex-
ploration; every parameter change will result in slightly
different outputs that must be forecast in real time.

3) Accuracy: Outputs produced during exploration must be
reasonably accurate to ensure their usefulness. Once a
planner has determined parameters of interest, he or she
may decide to perform a set of actual simulation runs.



B. Research Questions

Specific research questions we explore include:
1) How can we minimize the number of iterations required

to build our models while still ensuring statistical cov-
erage of the parameter space?

2) What are the implications of our execution model, and
how can we obtain necessary processing resources?

3) A large amount of training data is necessary for making
predictions. How can this data be managed in a scalable
and fault-tolerant manner?

4) How can we deal with increases in dimensionality as the
number of input parameters grows?

5) What prediction models can provide both accurate and
real-time results?

C. Summary of Approach

Our approach treats the DES in question as a black box
and focuses on deriving relationships between the inputs
and outputs. Given a disease spread scenario, our framework
views input tuples as points in the multidimensional parameter
space. We first derive bounds for each of the dimensions
from both historical data and subject-matter experts, and then
sample within this parameter space to create novel scenario
variants. Our objective is two-fold: we wish to ensure adequate
coverage of the parameter space, while also controlling the size
of computational workloads.

For each scenario, we inspect the variances of key output
variables to derive the number of iterations that must be
executed. Both the variant generation and their subsequent
simulation iterations are implemented as MapReduce [7] jobs
that are orchestrated by our Forager component. Forager deals
with highly elastic resource pools and can scavenge for CPU
cycles on both physical and virtual machines, including spot
instances. These simulation runs generate a large amount of
data, often producing over 1 TB of outputs in a few hours. To
cope with these storage demands, we use a distributed storage
system to manage the data in a fault-tolerant manner.

Once the simulation iterations have been executed, we
model the relationships between inputs and outputs. To facil-
itate predictions, we create a model for each output variable.
We consider both linear (multivariate linear regression) and
non-linear (artificial neural networks) methods to construct
these models, and use k-fold cross-validation to assess their
generalizability. The entire process enables our system to
provide accurate answers to “what if” scenarios in real time.

D. Paper Contributions

This paper describes our approach for supporting interac-
tive exploration of discrete event simulations. The research
involves several key features, including the use of analytics to
ensure accurate and timely forecasts that account for statistical
coverage of the parameter space, orchestration of workloads,
generation and management of training data, correlations
between inputs and outputs, dimensionality reduction, and the
use of learning structures. Our specific contributions include:

• Applicability: The framework is broadly applicable to
other compute-intensive simulations. We treat a given
simulation as a black box and focus on deriving the
relationship between inputs and outputs.

• Dimensionality: Our approach copes with high dimen-
sionality and diversity of dimension types.

• Data Management: Scenario variants and their outputs
comprise a voluminous dataset. We use a distributed key-
value store and MapReduce computations to deal with
these storage and processing demands.

• Resource Management: Processing and storage resources
can be sourced from physical or virtual machines. Our
framework accounts for running in a highly elastic en-
vironment and can scale both up and down to meet
changing requirements.

• Forecasting: The proposed approach learns from the data
to derive relationships between inputs and outputs. We
have incorporated support for both linear and nonlinear
models and exploration of the parameter space can be
performed in real time.

E. Paper Organization

The rest of the paper is organized as follows. Section II
describes our scenario variant generation process. Section III
focuses on our distributed execution platform, Forager. Sec-
tion IV outlines how we manage outputs and distributed state,
followed by Section V, which describes how we build our
models and make predictions. Section VI surveys related work,
and Section VII provides concluding material and our future
research direction.

II. GENERATING NOVEL SIMULATION VARIANTS

In our subject simulation, input parameters are used to
describe disease properties and outbreak characteristics. These
variables include factors such as the probability of infection
transfer, maximum airborne distance of disease spread, and the
overall area at risk for infection. The first piece of information
required to generate a new scenario is the data type for
each input variable, which could include booleans, integers,
floating point values, or even line charts and probability
density functions (PDFs). Our framework can identify most
data types automatically, but for more exotic parameters we
provide an XML-based variable description language (shown
in Figure 1).

<param name="max-spread" type="range">
  <bounds>2.83106, 6.0</bounds>
</param>

<param name="latent" type="distribution">
  <bounds>0, 9.3631</bounds>
  <mean>1.98418, 4.1</mean>
  <variance>1.21, 4.20754</variance>
  <skewness>-0.235034, 1.16052</skewness>
</param>

Fig. 1. A sample XML variable description file showing range and probability
distribution parameters.



While some input variables have predefined ranges of valid
values (such as a percentage ranging from 0 to 100%), others
are completely unconstrained. In both cases, a value may be
valid but not plausible, i.e., extremely unlikely to occur due
to environmental conditions or other factors. To produce plau-
sible ranges for the input variables, our framework consults
historical data available in previous scenarios as a preliminary
step; for instance, Figure 2 contains a variety of probability
density functions that were used previously for the “cattle
latent period” input parameter (amount of time between an
infection and the onset of infectiousness, in days). Next, the
ranges determined by this process are inspected and refined
by subject-matter experts if necessary. This process helps
reduce or potentially avoid user intervention while maintaining
accuracy.

A. Complex Data Types: Charts and Probability Densities

While most input variables represent a numerical value
or discrete state, simulations also frequently employ two-
dimensional line charts or probability density functions to
describe complex behavior. These data types play a vital
role in simulation outcomes and must be varied to enable
the exploration of a scenario’s parameter space. However, a
simple range of values does not capture the multidimensional
relationships that these data types describe.

To generate a 2D line chart variant, we consider four
variables that describe chart behavior: the span of x- and y-
values, maximum x- and y-values, x-value at the maximum
y-value, and the percent distance across the x-axis where the
maximum y-value occurs. Next, we perturb the data points to
create a new chart that exhibits behavior similar to the source
chart, while still representing the shift in values derived from
historical trends and feedback from subject-matter experts.
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Fig. 2. A variety of probability density functions (PDFs) that were used to
describe the “cattle latent period” parameter in previous scenarios.
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Probability density functions can often be decomposed into
a few distinguishing variables as well: mean, variance, and
skewness can all be manipulated to create new PDF variations.
Unfortunately, each type of distribution has its own formulas
for modifying these attributes, and the fact that our simula-
tion supports 22 different types of distributions only further
complicates matters. Instead of dealing with this issue as 22
separate problems, (or possibly more for other simulations)
we generalize the PDFs by transforming them to piecewise
linear approximations. Once this step has been completed, we
inspect the resulting upper and lower bounds, mean, variance,
and skewness. These attributes are modified to create a new
linear approximation of a curve. Next, a beta distribution is
mathematically fit to the curve. Beta distributions are described
by two shape parameters, α and β, which can be adjusted to
model a wide range of distributions: normal, continuous, skew
normal, exponential, etc. An overview of our PDF generation
algorithm is provided in Figure 3. We have verified that this
approach works with the 22 PDFs supported by NAADSM,
including Bernoulli, hypergeometric, binomial, and logistic
distributions.

B. Latin Hypercube Sampling

After establishing plausible input ranges, one might elect to
generate new scenario variants with random samples across the
parameter space. However, simple random sampling assigns an
equal probability to each possible input without considering
the plausibility of the values. To circumvent this limitation,
Monte Carlo sampling methods draw values from a probability
distribution. This preserves the plausibility curve of potential
inputs, but also increases the likelihood of choosing highly
probable values; if a small number of samples are drawn from
the probability distribution, a correspondingly small portion of
the input space will be represented. This means that we would
have to generate (and execute) a large number of scenario
variants to adequately explore the parameter space with Monte
Carlo sampling.

Unlike simple random sampling or Monte Carlo sampling
methods, Latin Hypercube Sampling (LHS) [8] stratifies the
input probability distributions to better represent their under-
lying variability. This reduces the number of samples required
for our algorithms to adequately explore the scenario param-
eter space, which in turn decreases the overall computational
footprint of the framework. LHS owes its name to Latin
squares, which are N × N arrays that contain N different
elements. Each element in a Latin square occurs exactly once
in each row and column (see Figure 4). When this concept is
applied in a multidimensional setting the elements occur once
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Fig. 3. A visual overview of our probability density function (PDF) variation algorithm. The original PDF (a) is converted to a piecewise linear approximation
(b). Next, key attributes (upper and lower bounds, mean, variance, and skewness) are modified to create a linear approximation of a new PDF (c). Finally, a
beta distribution is fit to the modified linear approximation to create a new PDF variant (d).
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Fig. 5. Sampling performed over a normal distribution using random, Monte
Carlo, and Latin Hypercube sampling. In each case 1,000 samples were taken
and are represented by 50 bins.

in each hyperplane, forming a Latin hypercube. This allows us
to produce samples across all the variables in the parameter
space in a single sampling step. Based on the number of
samples required, each stratum represented by the elements in
the hypercube is divided into equal intervals. These produce
samples in the range [0, 1], which are converted back to the
original units using the information from our data mining
process. A visual comparison of random, Monte Carlo, and
Latin Hypercube sampling is provided in Figure 5. Latin
Hypercube Sampling provides the best overall representation
of the underlying distribution (a standard normal distribution)
when the number of samples is held constant across methods.

C. Measuring and Verifying Output Variance

Once a scenario variant has been created, it must be
executed several times to obtain an understanding of its output
distribution and behavior. To begin this process, 32 pilot runs
are executed for each variant. After the pilot runs are complete,
our framework determines whether the overall variation of the
output variables is of practical significance or not. Doing so
requires two pieces of information: (1) the outputs that are
most meaningful from an analytical standpoint, and (2) the
minimal significant difference in output variances that must be
achieved. As with input range discovery, both of these items
are obtained from mining historical data and subject-matter
experts.

To establish a set of variables that have a strong analyt-
ical significance, our framework inspects reports generated
from past scenario executions to determine which variables
were requested most frequently by end users. This process
can be supervised by subject-matter experts or performed
autonomously. Once the prediction engine has been boot-
strapped, our framework can also make recommendations on
which output variables might warrant further analysis.

Determining the minimal significant difference in output
variables requires the knowledge of a subject-matter expert.
These values can be expressed as percentages, numeric ranges,
or confidence intervals, and tell the framework whether or
not there is enough variation in the output variables. They
also determine how well the input parameter space has been
explored based on the overall variance of the outputs. If the
minimum variance is met, execution of the scenario variant is
complete. Otherwise, the observed variance is used to calculate
how many more executions of the scenario must be carried out
to achieve the required minimum variations.

III. DISTRIBUTED SIMULATION ORCHESTRATION:
FORAGER

Our framework requires a large number of processing
resources, with each scenario produced by the simulation
variant generator representing several discrete units of com-
putation. In our initial tests, 10,000 variants were generated
and each was run for at least 32 iterations. After running



additional simulations to achieve target output variances (as
discussed in the previous section), the total number of itera-
tions reached approximately 400,000. This makes our frame-
work an ideal candidate for execution in an elastic cloud
or clustered environment due to its computational footprint
and the uncertainty in total iterations required. Compared to
the problems addressed by distributed execution frameworks
such as Hadoop [9], Dryad [10], or the myriad of other
MapReduce [7] implementations, the tasks we execute and
manage have several distinct features:

• Run times are uncertain, and vary due to the stochastic
nature of the underlying simulation.

• The overall number of tasks is significantly larger than
the number of available processing resources.

• Tasks can be completed out-of-order, and there are no
“waves” of execution.

• The pool of processing resources is highly elastic, fluc-
tuating constantly as availability changes over time.

• The framework must deal with other users and processes
contending for resources.

Because of these processing requirements, we chose to design
a new distributed execution engine, called Forager. Similar
to animal behavior observed in nature, Forager must adapt to
constantly changing external conditions to acquire resources.
Forager is based on our Granules cloud runtime [11], [12], and
provides new scheduling and orchestration functionality for
our specific use case. Granules is backed by the NaradaBroker-
ing project [13], a reliable content distribution infrastructure
and messaging substrate. Each of these related projects is an
open source effort.

A. Resource Acquisition

For a given scenario, our framework may produce hundreds
of thousands of executable tasks. This creates a large demand
for processing elements, which Forager acquires from a variety
of sources: clusters, idle workstations, and both public and
private clouds. Unlike volunteer computing [14] deployments,
typical Forager installations are managed by a single entity
in a trusted environment. This constraint helps us ensure
that confidential or proprietary information being used by the
simulation is not made publicly available.

A lightweight Forager daemon is run on each participating
resource. Rather than being managed by a central server
or a coordinating node, the daemons securely connect to a
distributed file system that maintains a set of pending tasks and
processing directives. These processing directives allow the
administrator(s) of the Forager cluster to assign specific rules
to the resources. Directives include items such as the particular
time of day that the resource may be used, the maximum
number of cores that should be assigned to tasks, process
priorities, and requirements for specific hardware. When the
processing directives permit, the daemon will remove one or
more of the tasks from the pending task queue and begin
execution. The pending task queue contains a task entry for
each task submitted to the system. Task entries describe:

• Current status (pending or executing)

• The process to be executed and its parameters
• Time of submission
• Resources actively executing the task and their associated

start times
An additional list is maintained to record completed and failed
tasks. Modifications to the lists are submitted as transactions,
ensuring the list state will remain consistent even in the event
of a failure.

B. Task Composition

Forager tasks are composed of several processing steps.
Scenario variants are created in an initial partitioning phase
and stored in the distributed file system. Next, the variants
are loaded and executed during the map phase. In the reduce
phase that follows, raw simulation outputs are compressed and
filtered to produce a final dataset that is used for knowledge
extraction.

Since our MapReduce implementation must deal with fre-
quently changing execution conditions, it provides three op-
tions for stopping a running task: immediate termination,
memory-resident suspension, and hibernation. Immediate ter-
mination results in the loss of all progress made on the task,
but releases all resources immediately. This feature is useful
in situations where the host machine must shift resources
at a moment’s notice. Memory-resident suspension, on the
other hand, ceases execution but keeps the simulation in
memory, which is helpful when an idle resource becomes
busy for a short period of time. Finally, we added an optional
hibernation function that Forager tasks can implement to
gracefully serialize their state and store it in the distributed
file system. This allows Forager to cope with situations where
a task needs to be migrated to a different machine or when
processing directives will prohibit execution for a substantial
amount of time. Hibernating a task requires some time to
complete; for our particular simulation, tasks took about 4.2
seconds to hibernate on average (over 1000 samples).

C. Situational Scheduling

Diverging from the standard MapReduce execution model,
Forager daemons pull tasks from the distributed task queue
when they can contribute CPU cycles or other resources. This
allows dedicated hardware to continually execute new tasks,
while daemons on shared systems can wait for free resources
or until processing directives are met. To facilitate this ap-
proach, the Forager daemon monitors performance statistics
on a per-machine basis. These statistics include the CPU idle
time, steal time (in virtualized environments), memory and
disk usage, load averages, the context switch rate, and the
current number of active users on the machine. The lack of
keyboard or mouse activity can also be used to inform the
system of an idle resource, but is used on a case-by-case basis;
modern workstations often have several CPU cores available,
and our goal is to be able to partially leverage resources even
while others are using them.

While a scenario variant that has been running much longer
than usual may simply represent a particularly CPU-intensive
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Fig. 6. One-minute load average on a busy 4-core web server. Note the
increase in peak load during working hours (7 AM to about 3 PM). At night,
the server is mostly idle.

chain of events unfolding in the simulation, it can also indicate
that the daemon managing the task has insufficient resources.
We use the aforementioned performance statistics to track
resource utilization, and generate speculative tasks in the event
of a slowdown. Speculative tasks in our framework have the
option of using previously hibernated state information to help
reduce duplicate processing work, unlike the speculative tasks
seen in frameworks such as Hadoop [9].

Idling workstations and servers were one of the primary
motivating factors cited by Tanenbaum [15] for distributed
computing. These idle resources are especially prevalent in
large businesses and academic settings, and are prime targets
for cycle scavenging (exploiting unused processing resources).
Figure 6 demonstrates this phenomenon on a busy web server
at Colorado State University: during working hours (from
about 7 AM to 3 PM) the load average (number processes
waiting for or using the CPU) remains fairly high. However,
during nighttime the server is mostly idle, presenting an op-
portunity for our framework to run scenario variants. Forager
conducts situational scheduling to exploit these occurrences,
where task scheduling is based on current machine load
characteristics and the time of day (derived from temporal
usage patterns or preset intervals).

D. Leveraging Elastic Clouds

For situations where the processing requirements of a
simulation outstrip the capabilities of the resources acquired
through cycle scavenging and private clusters, we incorporated
support for cloud deployments as well. Forager allows partic-
ipating hardware to join and leave the system at any time,
making elastic cloud services an ideal means to supplement
its resource pool. Furthermore, Amazon provides EC2 spot
instances, which enable users to trade reliability for lower

prices. In essence, spot instances apply the laws of supply
and demand to virtualization: users issue a spot request with
their desired virtual machine (VM) characteristics, a maximum
price, and the dates and times the request is valid for. If the
market price of the VM exceeds the maximum specified, the
spot instance is terminated. On average, spot instances cost
50-60% less than their traditional counterparts.

In our use case, reliability is a secondary concern behind
overall processing throughput. Tasks are lightweight, self-
contained, and are executed over a relatively short period of
time. However, the spot VMs we used were never terminated
during our testing period (likely due to running during low-
demand summer months). We tested a range of VMs on
the Amazon public cloud as well as our own private cloud.
Table I illustrates the performance differences between the
configurations. These include VMs from the Amazon m1, c1,
m3, c3, and t2 instance families, along with virtualized and
bare metal results for our hosts running the KVM hypervisor
on Fedora 20 (Xeon E5620 with 12 GB RAM, Xeon E3-
1220v2 with 8 GB RAM).

TABLE I
SCENARIO EXECUTION TIMES IN A VIRTUALIZED ENVIRONMENT

AVERAGED OVER 1000 ITERATIONS.

Hardware Mean Execution Time (s) SD σ (s)
t2.micro 442.94 215.79

m3.medium 118.84 21.04

c3.large 57.07 10.06

m1.medium 51.80 8.87

c1.xlarge 50.79 8.82

c1.medium 48.66 7.03

E5620 (KVM) 64.90 10.47

E5620 (Bare) 60.02 8.60

E3-1220v2 (KVM) 49.86 7.76

E3-1220v2 (Bare) 47.33 5.70

While these results closely mirror the theoretical perfor-
mance differences between instances, it is worth noting that
the t2.micro can also achieve competitive results when enough
CPU credits are available for “burst” performance, which
temporarily allows the instance to consume more than its
baseline allotted CPU time. When burstable, the average
scenario execution time on a t2.micro was 99.27 seconds.
Since Forager can migrate longer-running tasks and monitor
CPU steal time at each resource, burstable instances are a
viable option for cycle scavenging as long as the primary
function of the VM does not tax the CPU. Interestingly,
the previous-generation m1 and c1 instances exhibited better
performance than their newer counterparts for our particular
workload. We configured our AWS spot requests based on the
price:performance ratio derived from these results and also set
a hard upper bound for price based on our budget. In general,
our spot requests were designed to choose the lowest priced
VMs available, and avoided m3.medium instances unless there
was a substantial cost benefit. Our systems experienced 5.3%



and 8.1% virtualization overheads on the E5620 and E3-
1220v2 processors, respectively.

IV. OUTPUT MANAGEMENT AND STORAGE

Rather than relying on a central server or coordinator pro-
cess, our framework stores its persistent state in a distributed
file system. This information includes pending and executing
tasks, resource performance statistics, and the overall system
status. Even more importantly, the distributed file system
is tasked with managing and storing simulation outputs as
well. These outputs must be stored in a scalable and fault-
tolerant manner: the 400,000 iterations produced from our
single pilot scenario (one in a multitude of exploration pos-
sibilities) consumed about 1 TB of storage space. We use
our Galileo [16], [17], [18], [19] DHT-based key-value store
to fulfill these requirements. Galileo is a distributed, fault-
tolerant, and document-oriented storage system, making it an
ideal candidate for managing the JSON output files produced
by our subject simulation.

A. Output Compression

To help manage output file sizes, we evaluated each of the
compression algorithms available in Galileo: LZO, DEFLATE,
Burrows-Wheeler, and LZMA. Outputs were stored in append-
only blocks of approximately 1,000 MB each (320 simulation
iterations) before compression. Table II contains the resulting
file sizes and their corresponding compression ratios for each
of the algorithms surveyed.

TABLE II
OUTPUT COMPRESSION AVERAGED OVER 32,000 ITERATIONS.

Algorithm File Size (MB) Compression Ratio
No Compression 978.2 1.0

LZO 174.1 5.6

DEFLATE 97.2 10.0

Burrows-Wheeler 37.6 26.0

LZMA 34.1 28.6

For the JSON outputs produced by our simulation, the
LZMA algorithm provided the best average compression ra-
tios. However, we also considered compression speed; Ta-
ble III provides compression and decompression times for each
of the algorithms.

TABLE III
COMPRESSION AND DECOMPRESSION TIMES AVERAGED OVER 32,000

ITERATIONS.

Algorithm Compression (s) Decompression (s)
LZO 1.9 6.4

DEFLATE 16.5 6.6

Burrows-Wheeler 179.0 15.7

LZMA 211.43 7.61

In our specific use case, raw outputs will be compressed
once and decompressed several times later during analysis and
forecasting. This led us to choose the LZMA algorithm due
to the compression ratios it achieved on our dataset as well
as its decompression times, which were competitive with the
fastest algorithms (LZO and DEFLATE). Ultimately, output
compression saves a substantial amount of disk space and
greatly increases exploration capabilities on a given set of
hardware.

V. KNOWLEDGE EXTRACTION:
MODELING AND PREDICTION

After orchestrating our scenario variants across the resource
pool and storing their outputs, we begin the final processing
step of our framework: building predictive models. These
models generalize the scenarios to allow interactive explo-
ration of their parameter space. Building the models is a one-
time process that bootstraps our real-time forecasting engine.
To make the predictions, we used both multivariate linear
regression and artificial neural networks (ANNs).

A. Dimensionality Reduction

Our particular simulation involves a large number of inputs
and outputs. When making predictions, these values contribute
to a very high overall dimensionality. To help reduce the
effects of the curse of dimensionality, we evaluated two meth-
ods commonly used for dimensionality reduction: principal
component analysis (PCA) and correlation analysis. PCA is
a method that can be used to project a dataset onto a lower
dimensional space. This is achieved by selecting components
that contribute the most to the underlying variability in the
data. However, PCA does not consider the relationship be-
tween input and output variables in our case, which can lead
to the removal of some inputs that may influence outcomes. To
avoid this issue, we used correlation analysis with the Pearson
correlation coefficient to measure the degree of correlation
between input variables and the outputs. Using this approach
enables us to select input variables that tend to have a strong
influence on simulation outcomes, which are then used to build
our models.

B. Prediction Methods

To create our validation and test datasets, we used k-
fold cross-validation with k = 10. We generated our models
with artificial neural networks (ANNs) and multivariate linear
regression, and then evaluated the root-mean-square error
(RMSE), creation times, and prediction times of both methods.
In our case, RMSE (the average prediction deviation) and
prediction times are critical in evaluating both the accuracy
of our forecasts and the overall forecasting speed. For both
methods, we generated an individual model for each output
variable.

Artificial neural networks are non-linear computational
models inspired by the characteristics of biological neural
networks. ANNs can be used for a variety of machine learning
applications, and are composed of interconnected neurons that
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Fig. 7. Prediction accuracy for disease duration using multivariate linear
regression. Samples close to the 45-degree reference are highly accurate.

are responsible for processing information. In our framework
we used a feedforward neural network from the PyBrain
machine learning library, which was trained with backpropa-
gation. The network was configured with one hidden layer, and
the number of hidden units was selected empirically through
an iterative process.

Multivariate linear regression is an approach used for mod-
eling the relationships between multiple dependent variables
and multiple independent variables. It produces a set of linear
predictor functions that we then use to forecast scenario
outcomes. We evaluated several regression options and settled
on the Least Absolute Shrinkage and Selection Operator
(LASSO) method, which penalizes the absolute size of re-
gression coefficients to help reduce the influence of variables
that have little impact on the model. Out of the methods we
tested, LASSO provided the best predictive results.

C. Experimental Results

To evaluate our models, we used the inputs and outputs from
the 10,000 scenario variants produced by our framework. We
considered a total of 1,812 raw input variables, and selected 10
key output parameters based on the guidance we received from
epidemiologists. These outputs include items such the disease
duration and number of infected animals in the scenario, which
are helpful in various forms of analysis (such as determining
the economic impact of a particular type of outbreak).

Table IV contains performance statistics for both of our
prediction models built with a 133 input parameter set that
exhibited high correlation with the output parameters. Pre-
dictions were performed 1,000 times to illustrate how the
framework would perform in a situation that required results
from a large number of models. Multivariate linear regression
offered the best performance in both of our timing criteria
(time to build the model, and time to make a prediction),
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Fig. 8. Prediction accuracy for disease duration using an artificial neural
network. Samples close to the 45-degree reference are highly accurate.

but it is worth noting that both methods provided sub-second
prediction performance.

TABLE IV
MODEL GENERATION TIMES AND PREDICTION PERFORMANCE.

Model Build (s) Predict 1,000 Times (ms)
Regression 1.5 0.2

Neural Network 7998.0 75.0

To visualize the prediction accuracy of our framework,
Figures 7 and 8 contain the actual values of the disease
duration output variable plotted against predictions for both
multivariate linear regression and an artificial neural network.
Values close to the 45-degree reference line are highly accu-
rate. The root-mean-squared error (RMSE) for the multivariate
linear regression test was 4.4 days, while the RMSE exhibited
by our neural network was 5.7 days. Overall, these values
indicate that both models were able to fit the data and provide
forecasts in a timely manner, but multivariate linear regression
provided better performance in our specific use case. Figure 9
demonstrates prediction accuracy using an alternative repre-
sentation; 70 randomly-selected points have been plotted from
the predicted outcomes along with their corresponding actual
values to illustrate how closely the predictions have fit the
data.

VI. RELATED WORK

Parallel and distributed discrete event simulation has been
well-studied in the literature [5], [20], [21]. While these
simulations often have numerous parallelization opportunities,
they also generally require fine-grained synchronization. Most
importantly, a parallel version of a DES must ensure correct-
ness, i.e., the parallelization does not change the output of an
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Fig. 9. Predictions using multivariate linear regression for 70 randomly-
selected samples. Here predicted values are overlaid on the actual values to
illustrate how closely our predictions fit the data.

identical simulation run on a single thread. Our framework
avoids these issues by treating the DES as a black box, and
contrasts with parallel DES by providing real-time forecasts.
However, parameters discovered with our framework that
produce an outcome of scientific interest could also be run
in a parallel DES to confirm the results in an efficient manner.

Distributed task queues like Celery [22] leverage the tech-
nologies behind message-oriented middleware (such as Rab-
bitMQ [23]) to manage distributed execution. Like Forager,
Celery supports automatic scaling, resource monitoring, and
rate/time limits. However, these limits are generally designed
to enable load balancing rather than sharing resources with
other users. This class of system is often designed for short-
lived task execution and requires a more involved setup and
administration process. Additionally, many message broker
implementations are centralized or represent single points of
failure. Further, implementing an execution queue on a system
with transactional semantics instead (such as a distributed
database) has several advantages [24].

Hadoop [9], [25] and its accompanying file system,
HDFS [26] share some common objectives with our frame-
work. Hadoop is an implementation of MapReduce [7], which
often involves multiple waves of execution that must be
completed before the next wave can start. Additionally, the
system is often installed on a dedicated cluster and does
not need to suspend or migrate tasks when the underlying
resources become busy. Like the distributed file system we
use in this work, HDFS replicates information across multiple
physical machines to ensure failures do not result in data loss.

MongoDB [27] is a distributed document store that can
employ MapReduce computations for analysis. Similar to
Galileo, MongoDB supports range queries, data replication,
and clustering. Its storage format, BSON, is a binary serializa-

tion of JSON documents. This means that other formats (such
as XML, INI, YAML) must be converted to their equivalent
JSON representation before being stored in the system. While
MongoDB is scalable and efficient at resolving queries, it
also imposes some limitations on the size and quantity of
documents being stored.

The Berkeley Open Infrastructure for Network Computing
(BOINC) [14] is a volunteer computing platform that enables
home users or organizations to contribute their idle processing
resources towards a variety of scientific projects. The plat-
form can also be used privately by organizations to create a
lightweight grid environment. Unlike our framework, BOINC
is generally run on untrusted hardware and requires duplication
of tasks to ensure the validity of their outputs. Additionally,
BOINC clients are usually deployed on single-user computing
devices rather than public resources, and are administered
individually.

Grid computing technologies, such as the Globus Toolkit
[28] or computing management frameworks such as HT-
Condor [29] share a common goal of creating distributed
processing and storage environments. These deployments often
combine the computing hardware of multiple organizations
into a single coherent (and heterogeneous) resource pool. They
also support cycle scavenging, where idle resources are used
for background processing. Unlike volunteer computing, these
execution frameworks are administered by a central organiza-
tion and do not have to deal with untrusted resources. Our
framework is designed for single-organization installations,
and requires less administrative setup and maintenance.

GEODISE [30], [31], [32] is a user-friendly wrapper for
HTCondor that enables multidisciplinary processing and data
management functionality. GEODISE supports scripting en-
vironments such as MATLAB and Jython and can model
the dependencies and flow of information with an integrated
scientific workflow editor. Like Forager, GEODISE monitors
resources to determine which are currently available for use.
However, the framework is much more involved compared to
the ad-hoc usage pattern Forager is intended for.

VII. CONCLUSIONS AND FUTURE WORK

Producing accurate forecasts for discrete event simulations
involves: (1) ensuring coverage of the parameter space, (2) ef-
ficient orchestration of workloads, (3) amortizing the I/O costs
associated with data accesses, (4) coping with dimensionality,
(5) building and training lightweight prediction models, and
(6) carefully planning which aspects of the framework are in
the critical path.

Ensuring statistical coverage of the parameter space pro-
vides us with better training data for the learning structures
and prediction models. Forager’s pull-based approach during
orchestration of workloads allows nodes to take on tasks when
they are able: lightly used machines execute more tasks than
others and a have greater share of the computational workload.
Our orchestration scheme works well with both physical
machines in shared, public clusters and virtual machines in



cloud settings, including spot instances. The use of a DHT-
based key-value store, Galileo, allows us to distribute the I/O
loads of the outputs generated by the simulation for training
of the prediction models.

Dimensionality reduction allows us to identify inputs that
contribute to the outputs. Pruning of the input parameter space
allows us to better train the prediction models. The pruning
process reduces training times and also improves the accuracy
of the predictions by eliminating inputs that are sources of
statistical noise. Our approach balances the costs associated
with training and making predictions. Though the training
process is compute-intensive, it is not in the critical path during
predictions. Once the training process is complete, making
the forecasts based on the constructed models is lightweight
and simply involves dot product calculations that can be
done in real time. Building a prediction model per output
parameter allows identification of inputs (and their respective
contributions) to the output. Though this increases the overall
training time, the improved accuracy in the predictions offsets
this cost.

Our future work will focus on both the orchestration frame-
work and our predictive models. While Forager can exploit
spot instances, learning structures or rule-based directives
could be used to optimize for the cost of VMs as well.
On the prediction front, we will investigate the use of other
learning structures such as random forests. We will also
evaluate canonical correlation analysis to aid in the reduction
of dimensionality.
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