Autonomous Data Management and Federation
to Support High-throughput Query Evaluations
over Voluminous Datasets

Matthew Malensek, Sangmi Pallickara, and Shrideep Pallickara, Members, IEEE

Abstract—In recent years, both the breadth and depth of information being generated and stored has continued to grow rapidly,
causing an information explosion. Observational devices and remote sensing equipment are no exception to this rule, giving
researchers new avenues for detecting and predicting phenomena at a global scale. To cope with these storage loads, hybrid clouds
offer an elastic solution that also satisfies processing and budgetary needs.

This paper describes our algorithms and system design for dealing with voluminous datasets in a hybrid cloud setting. Our distributed
storage framework autonomously tunes in-memory data structures and query parameters to ensure efficient retrievals and minimize
resource consumption. To circumvent processing hotspots, we predict changes in incoming traffic and federate our query resolution
structures to the public cloud for processing. We also demonstrate the efficacy of our framework on a real-world, petabyte dataset

consisting of over 20 billion files.

Index Terms—E.1.C Distributed file systems, E.1.B Distributed data structures, C.1.4.A Distributed architectures

1 INTRODUCTION

VER the past decade, there has been an exponential
Ogrowth in the amount of data that must be stored
and managed. IDC estimates that in 2011, 1.8 zettabytes
(ZB) of data was generated. One of the key contributors
to this increase is networked observational devices; while
the number of devices continues to rise, the resolution and
frequency of their measurements have also increased. This
leads to the accumulation of voluminous datasets that must
be processed to extract knowledge.

Due to the data volumes involved, targeting the entirety
of these datasets for ad hoc analysis is infeasible. Common
types of analysis include hypothesis testing, construction of
conditional probability tables in support for Hidden Markov
Models, and creation of regression and ensemble models to
make forecasts. A precursor to such analysis is interactive
query instrumentation and evaluation with MapReduce that
identifies portions of the dataset that are suitable for pro-
cessing. Each observation may be multidimensional, with
multiple features of interest. Furthermore, features may be
derived from existing features. In these applications, queries
play a significant role in processing and extracting knowl-
edge by identifying data blocks (and storage nodes) over
which computations should be performed. In our solution,
results from queries are returned as graphs that include the
metadata of matching results; leaves in these graphs contain
locations of data blocks on disk. Our MapReduce computa-
tions consume these graphs as input and then processing
activities are pushed onto relevant storage nodes to ensure
data locality.

e M. Malensek, S. Pallickara, and S. Pallickara are with the Department of
Computer Science, Colorado State University, Fort Collins, CO 80523.
E-mail: {malensek,sangmi,shrideep}@cs.colostate.edu

Given that our dataset is voluminous and new obser-
vations arrive at rapid rates, human intervention during
any stage of the data management process is infeasible.
Furthermore, query evaluations over the data must avoid
disk accesses; since seek times are on the order of a few
milliseconds, the performance overheads resulting from
disk accesses would be immense. Rather, metadata must be
extracted and maintained in memory-resident data struc-
tures as observations arrive. These memory-resident data
structures are then used during query evaluations and
instrumentation. The accuracy, timeliness, and volume of
results depend on in-memory data structures that assist
query evaluations.

1.1 Research Challenges

Supporting timely, accurate, high-throughput query evalu-
ations and ad hoc analysis at scale over voluminous time-
series datasets poses several unique challenges:

e Data volumes: The rates at which new observa-
tions are assimilated are high. We consider petascale
datasets with billions of files.

e Autonomous data management: Given the data vol-
umes and dimensionality of the feature space, hu-
man intervention is infeasible.

e Memory management: Data structures must be man-
aged autonomously to strike a balance between
memory Consumption, resolution, and correctness.

e Query instrumentation: Interactive query instrumen-
tation at scale poses several challenges, as the num-
ber of features and combinations of feature values
that can be explored are quite high.

1.2 Research Questions
We considered several research questions in this study:

1) What options allow us to improve query instrumen-
tation? It is often infeasible to manually search and
identify the most relevant feature combinations.

2) How can we autonomously increase query evalua-
tion efficiency? This involves managing query loads
and ensuring efficient memory use.

3) How can we federate with public clouds to cope
with increased demand while also avoiding expen-
sive data hosting and movement costs?

4) When and how can we assimilate federated VMs
under high load in a proactive manner that also ac-
counts for trends and seasonality in access patterns?

5) How do we maintain consistency in a federated set-
ting? Lightweight gossip protocols must be used to
synchronize between the private and public clouds.

1.3 Overview of Approach

Our approach targets autonomously-tuned data structures,
query evaluations, and load balancing operations in a hy-
brid cloud setting that includes combinations of both private
and public clouds. We provide fuzzy queries with a SQL-like
syntax that allow users to locate records that are most rele-
vant to their query parameters, sidestepping the traditional
iterative query refinement process. To avoid unnecessary
processing, we autonomously resize bloom filters that are
used to determine whether or not query inputs will produce
results. In situations where high loads overwhelm nodes in
the cluster, we federate processing activities to the public
cloud by predicting incoming load changes and launching
VMs to compensate. In a federated setting, index struc-
tures are optimized to improve memory usage and reduce
turnaround times. The algorithms and designs discussed in
this work were implemented in the context of our multidi-
mensional distributed storage framework, Galileo, but are
broadly applicable to other systems.

1.4 Paper Contributions

This study describes our framework for autonomous data
management at scale using federated clouds. Specific con-
tributions include:

e We demonstrate how to autonomously tune data
structures and query evaluations as the feature space
evolves. Our approach is able to reduce memory
footprints without compromising on accuracy.

o We have identified aspects of voluminous data man-
agement that are amenable to federation. Our frame-
work federates in situations where query instrumen-
tation and evaluation must be performed efficiently.

e We have incorporated support for both proactive
and reactive cloud bursting strategies. Our proactive
scheme accounts for trends and seasonality in the
queries received at individual storage nodes.

e Our framework addresses the issue of consistency in
federated settings. We rely on eventual consistency,
but are able to prioritize state updates between the
private cluster and public cloud based on their im-
pact and importance to query evaluations.

1.5 Related Work

While our cloud bursting approach focuses on moving
computational loads associated with query resolution to
the public cloud, several storage frameworks support mi-
gration of physical data in response to increased load;
Cloudy [1] is a multi-paradigm storage system based on
Cassandra [2] that implements a reactive cloud bursting
strategy orchestrated by its Cloudburster component. Simi-
larly, Bicer et al. [3] describes a system for data-intensive
computing that incorporates cloud bursting for storage scal-
ability.

MongoDB [4], HDFS [5], and HBase [6] all support
expanding and contracting their respective resource pools,
which may include VMs in the cloud. Each system is
designed around specific data models to best serve their
problem domains. However, a distinction is not made in
these systems between nodes in the private and public
clouds.

1.6 Experimental Dataset and Test Environment

The test dataset used in this study was collected from the
NOAA North American Mesoscale Forecast System (NAM).
The NAM contains atmospheric feature data including spa-
tiotemporal attributes, surface temperature, precipitation,
cloud cover, visibility, and pressure. We sampled from the
NAM to create our dataset of 20 billion files. Each file
contained 10 KB of raw feature data and 40 KB of graphical
tiles for a total dataset size of 1 petabyte.

Our benchmarks were carried out on a heterogeneous
private cloud consisting of 312 VMs. Each VM was allocated
a single processor core, 2-4 GB of RAM, access to a shared
gigabit network link, and a physical hard disk for storage.
Host machines ran Fedora 20 and the KVM hypervisor,
while guest VMs ran Fedora 21. Our public cloud VMs ran
Red Hat Enterprise Linux 7.1 on Amazon Elastic Compute
Cloud (EC2) under Xen HVM. In an effort to minimize the
physical distance from our private cloud in Colorado, USA,
EC2 instances were launched in the us-west-1 regions.
Galileo was run under OpenJDK version 1.7.0_75, and we
used EC2 API Tools 1.7.3.2.

2 SYSTEM OVERVIEW

Our distributed storage framework, Galileo, was designed
for high-throughput management of multidimensional data
[7], [8]. Besides the standard storage and retrieval opera-
tions, Galileo supports a variety of analytics functionality
including range-based, exact-match, geospatial, and approx-
imate queries. To ensure scalability, the Galileo network
design is a zero-hop DHT similar to Apache Cassandra [2]
or Amazon Dynamo [9]. This allows each storage node in
the system to route requests directly to their destination
without taking intermediary hops through the network. To
further balance scalability and load distribution, nodes can
be placed into groups (and subgroups) to create a network
hierarchy.

(a) Geohash partitioning

DN

DJ

DB | /pJC | DF | DG | pJu | DJv | DJY | DJZ

DJ8 DJ9 DJD DJE DJS DJT DJW

DJ2 DJ3 DJ6 DJ7 DJK DJM DJQ DJR

DJO DJ1 DJ4 DJ5 DJH DJJ DJN DJP

(b) Graph-based indexing

Temperature
Snow Depth

10-20%

00 O 00

Humidity

File Location

Fig. 1. An overview of key Galileo components. (a) demonstrates the Geohash algorithm, which represents spatial locations as one-dimensional
Base-32 strings. In this example, the 1030 x 620 km region represented by Geohash DJ is divided into 32 smaller subregions by adding an additional
character to the string. (b) lllustrates the structure of our graph-based indexes. A traversal through the graph leads to leaves that contain pointers

to files on disk.

2.1 Partitioning Algorithm

We use the Geohash [10] algorithm to place incoming spatial
data points into groups. Geohash describes 2D locations
on Earth as one-dimensional Base-32 strings where longer
strings represent smaller (and therefore more precise) spa-
tial regions. For example, the coordinates of 30.3369 N,
81.6614 W (Jacksonville, Florida in the USA) would translate
to the Geohash string DJMUTDXVR. Figure la demon-
strates this concept; Jacksonville resides in the 133 x 155
km region described by Geohash DJM, which is one of 32
subregions within the region DJ.

In this study, we assigned our 312 virtual machines to
39 groups with 8 machines per group. Each group was
assigned two spatial regions represented by two-character
Geohash strings, and an SHA-1 hash of the incoming data
was used to assign readings to particular nodes within the
groups. This partitioning strategy has two key advantages:
storage load is distributed as uniformly as possible, and the
search space of queries that specify particular spatial regions
can be quickly reduced to a small portion of the overall
dataset.

2.2 Query Support: Metadata and Feature Graphs

While Traditional DHTs do not support queries or search
functionality, Galileo incorporates a distributed, graph-
based indexing structure that allows a variety of queries to
be executed across its storage nodes. As multidimensional
records are assimilated into the system, they are trans-
formed into paths that represent a graph traversal that ends
in leaf nodes with pointers to raw data blocks on disk. These
paths maintain relationships between features, creating a
hierarchical graph that can be reoriented, traversed, and
queried. Figure 1b provides an example of a graph-based
index in Galileo.

To facilitate distributed lookups, storage nodes main-
tain two distinct graphs: the coarse-grained and globally-
distributed feature graph, along with a fine-grained per-
node metadata graph. Vertices in the graph are configured to
represent ranges of feature values, called tick marks, which
control the level of quantization applied to the index. The
feature graph acts as a precursor to a distributed query by
reducing its search space down to the set of potential storage
nodes that may contain relevant records; while a feature
graph query may produce false positives, it will not produce
false negatives. Once the feature graph query is complete,
the distributed query is submitted to the set of relevant
storage nodes for evaluation against their metadata graphs.
The resulting subgraphs are then merged in a MapReduce-
style computation and returned to the client where they
can be traversed, inspected, and used to download the full-
resolution data blocks from the servers.

3 QUERY INSTRUMENTATION AND EVALUATION

Queries in Galileo are expressed as MapReduce computa-
tions. The Map phase begins after the search space has been
reduced by the feature graph and involves submitting the
query to relevant storage nodes for evaluation against their
respective metadata graphs. In the Reduce phase, resulting
subgraphs are aggregated into a single result graph that will
be relayed to the client. To limit network traffic during the
process, storage nodes with the largest projected number of
relevant results are used as Reducers. Clients are also given
the option of having subgraphs streamed to them directly,
a feature that is useful in applications such as visualization
that can receive and process data iteratively.

3.1 Fuzzy Queries

To help locate relevant data points, Galileo supports fuzzy
queries, which allow users to provide a set of constraints
that can be relaxed to find closely related information.
Our previous implementation of fuzzy queries focused on
finding the closest matching data points, but simply being
the closest match does not always guarantee relevance; for
instance, if a user searches for flights from New York to
Frankfurt departing at 3 PM and the closest match departs
at 3:15 with a 48-hour layover in Iceland, then a direct flight
leaving at 4 PM may be the preferable choice. Fuzzy queries
are formulated in a manner similar to range or exact-match
queries, but also contain flags to select which constraint(s)
can be relaxed by the system.

To autonomously improve the relevance of fuzzy query
results, we allow the search to expand horizontally across
the graph past the nearest matching vertices. This allows
the query engine to find several alternative paths that may
have higher relevance. The number of files associated with
each path is then totalled and the client receives a sorted
list of matching data points along with information about
how often they occurred in the dataset. Galileo limits fuzzy
queries to +10% of the known feature range, but narrower
or broader limits can also be provided by the user.

3.2 Path Prediction with Dynamic Bloom Filters

Queries often result in no matching records. In such cases, it
is beneficial to have fast identification of null queries rather
than performing an unnecessary metadata graph traversal.
Our previous work avoided these null queries using path
prediction that involves each storage node maintaining a
Bloom filter [11] that is updated with paths from the meta-
data graph as they are added to the system (excluding leaf
nodes). In a federated setting, avoiding null queries becomes
even more critical as latencies increase.

Since the storage nodes maintain a unique metadata
graph for their specific data blocks, each Bloom filter is dif-
ferent as well. Bloom filters do not produce false negatives,
but they do produce false positives. The false positive rate
for the filter is determined by the number of: (1) bits in the
filter, (2) members in the set, and (3) hash functions that are
used to map an element to one of the bits in the filter.

In our previous implementation, we observed that the
false positive rate increased over time as new records were
added to the system. To avoid this issue, we now reinitialize
the Bloom filters when their false positive rates cross a
certain threshold. This involves increasing the number of
the bits in the filter and number of hash functions. There
are two key features in our approach: we avoid expensive
disk accesses, and support continuous servicing of queries
during filter replacement. Initializations do not involve disk
accesses since we use the paths within the memory-resident
metadata graph to populate the filter, and in our test de-
ployment the process took about 17.3 seconds on average to
complete. While the replacement filter is constructed, the old
Bloom filter continues to update itself and service queries.
Once the replacement filter is ready, the old filter is deleted.

4 FEDERATED QUERY EVALUATION

While private clouds offer a number of benefits, their pri-
mary limitation when compared to public clouds is re-
source capacities. In general, public clouds offer a near-
infinite capacity for scaling as well as a broad range of VM
configurations and pricing models. To cope with situations
where increased load overwhelms the capacity of a private
cloud, cloud bursting incorporates public cloud resources to
improve scalability and overall throughput. However, our
particular problem complicates cloud bursting due to its in-
herent storage requirements. Transferring terabytes of data
in response to increased load is time-consuming, expensive
(in both the monetary and computational sense), and often
cannot be completed quickly enough to provide significant
alleviation of load. A potential solution to this issue might
involve storing compressed subsets of the data in the public
cloud, but storage at scale is expensive: data transfers as
well as per-gigabyte consumption costs accumulate quickly.

As an alternative approach to migrating the files them-
selves, we use federated query evaluation to push our metadata
graphs to the public cloud for alleviation of the compu-
tational loads associated with resolving queries. Federated
query evaluation involves four key aspects:

1) Detecting excessive loads and forecasting future
query evaluation capacity based on usage trends

2) Launching VMs in the public cloud before storage
nodes become overwhelmed

3) Migrating relevant indexes to the new VMs

4) Re-routing and balancing incoming query requests

These components work together to improve query
throughput at the storage nodes, while also ensuring that
client-side turnaround times stay low.

To evaluate our approach, we gathered real-world usage
data from a busy file server at Colorado State University.
We collected the data over a six-hour period before an
assignment submission deadline for an undergraduate class,
and then scaled and shaped the resulting dataset to model a
sustained burst of query activity that would surpass the ca-
pacity of our private cloud. We chose this particular scenario
for our tests because it involved frequent, iterative metadata
requests along with varied read workloads. User requests
were transformed to randomized queries that consisted of
50% range queries, 25% fuzzy queries, and 25% exact-match
queries. Range queries included at least 5% of the overall
range of values for each feature type.

Figures 2a and 2b demonstrate the query throughput
observed in this test. The system is able to cope with
incoming query requests until around minute 100, where
the approximate computational capacity for a single VM is
reached. At peak load, each storage node was responsible
for around 100 clients with each issuing about 8.5 queries
per second, on average. Incoming requests begin to de-
crease around minute 200 and fall below system capacity by
minute 245. Note that for a small period of time, the number
of fulfilled queries exceeds the number of requests as the
storage nodes “catch up” with queries that were queued
during high load. One might expect this time span to be
larger, but the randomness in client requests combined with
averaging across the entire system reduces the amount of
visible lag exhibited on the server side.

1000

(a) Average Query Throughput (Per Storage Node)

Fulfilled
——- Requested
hY A
800| AINRIN
\
4 : \,
® / N
2 ; /: : \ :
Q
D GO0 N
[0} VA ; \
=1 / N
g // ; \\
> -/ ‘ ‘ o\ ‘
5400 A N
g / \
/ N\
200 ,/p T e ,,\, .
7/ \,
/ : \\
V \
0 L L L L L
60 120 180 240 300
Time (m)
12 (c) Projecting Query Fulfillment Rate
Observed Fulfillment
11k —— Projected Fulfillment | |
1.0
2L
©
@ 09
€
Q
£
E 08
S
w
0.7
0.8t
0.5 L

i i i
60 120 180 240

Time (m)

200000

(b) Cumulative Query Throughput

150000

100000

Queries/s

50000

I I I I
60 120 180 240 300

Time (m)
% (d) Federated VM Initialization Times
} I r3.xlarge
80 / [c3.4xlarge [
71 i2.xlarge
70} I 1.xlarg
< 60|
Q
£
= 50}
o
K<)
E 401
8
2 0t /
20
10 4
6 ‘ [Imales
Cold Start Warm Start (Initialization Only)

Fig. 2. Profiling different aspects of federated query evaluation: (a) Average per-node query throughput across the entire system during our test
scenario. Each storage node could service about 550 queries per second, leading to a resource shortfall. (b) Cumulative query throughput across
all 312 VMs. (c) Query fulfillment rates over time. As storage nodes become overloaded with requests, the fulfillment rate decreases. (d) VM startup

and initialization times.

4.1 Detecting and Predicting Excessive Query Loads

We use the fulfillment rate to describe query capacity at
a given storage node. For a particular time slice n, the
fulfillment rate I’ is expressed as the relationship between
completed queries (C'()) and requested queries (RQ)):

_ CQn

~ RQn

When the fulfillment rate falls below 1.0 (100%), the node
was unable to service all the requests and its computational
query load has exceeded capacity. This results in a backlog
of queries building up at the node and longer turnaround
times being observed by client applications.

Determining whether or not a storage node is over
capacity serves as a precursor to the cloud bursting and
hybrid query evaluation process, but several other factors
must be considered before the system begins launching
VMs in the public cloud. One such issue is load spikes that
overwhelm the capacity of a storage node for a short period
of time (usually a few seconds) and then dissipate. In these
cases, launching a new VM is unlikely to have any impact
on query throughput. This also highlights another key issue:
reactive cloud bursting has the potential to reduce load, but

F

only after reduced query throughput has been detected. In
applications that involve tight service-level agreements or
latency-sensitive clients, cloud bursting after the fulfillment
rate has decreased is already too late. For these reasons, we
target proactive cloud bursting in our implementation.

To forecast future fulfillment rates based on usage trends,
we use autoregressive integrated moving average (ARIMA)
models. ARIMA models are particularly effective for time
series analysis where the data in question is non-stationary;
for instance, retail sales fluctuate depending on season-
ality, and web services that target particular geographic
regions experience different traffic patterns depending on
the day of the week and time of day. ARIMA models
are parameterized by three variables, p, d, and ¢, which
correspond to the autoregressive, integrated, and moving
average components of the model, respectively. We use the
Hyndman-Khandakar algorithm [12] to select these param-
eters autonomously. Model inputs include the fulfillment
rate for each time slice, the overall number of incoming and
outgoing messages (storage, state transfer between nodes,
administrative controls, etc.), and the number of client con-
nections to the storage node. We also cap the fulfillment rate

at 1.0 to avoid training the model with abnormal values that
occur when a node is servicing queries that were queued
during high load.

Figure 2c illustrates the actual fulfillment rate observed
during our benchmarks along with the projected fulfillment
rate produced by our ARIMA model. For this particular
evaluation, 20 minutes of training data was collected before
predictions began, and forecasts were made 10 minutes into
the future. If we express the fulfillment rate as a percentage,
then the root-mean-square error (RMSE) was about 1.37%
in this test, on average. We use the RMSE to determine
prediction accuracy and to decide whether or not we are
forecasting too far into the future; if the RMSE exceeds
5% then we reduce the size of the prediction window.
However, determining the prediction window also depends
on external factors in the public cloud.

4.2 Cloud Bursting

If the projected fulfillment rate averages below a config-
urable service level for the entirety of our prediction window,
the system begins the cloud bursting process. In our test
scenario, we used a service level of 95% (fulfillment rate of
0.95). The service level for a particular deployment is chosen
based on the trade-off between sensitivity to changes in load
and desired client-side performance. High service levels will
improve query turnaround times on the client side, but may
require cloud bursting to occur more frequently and are
more prone to launching additional VMs during a short load
spike. We also allow a hard limit to be placed on services
acquired from the public cloud to ensure budget constraints
are respected.

Deciding when to cloud burst depends not only on
the prediction window, but also how long it takes to: (1)
start the VM, (2) transfer metadata, and (3) start Galileo.
While research has been conducted on how long virtual
machines take to launch in Amazon’s public cloud [13],
the rapid hardware and software changes that occur in
cloud providers make fixed values for startup times become
obsolete quickly. To help predict how long a storage node
will take to initialize in the public cloud, we record launch
statistics in an administrative dataset within Galileo.

Figure 2d outlines the startup and initialization times
(including network transfer) for three EC2 instance types:
r3.xlarge (0.35 USD/hr), c3.4xlarge (0.84 USD/hr), and
i2.xlarge (0.853 USD/hr). We chose these instance types
because of their relatively large memory capacities (around
30 GB); if multiple storage nodes are experiencing high load,
several metadata graph instances can be placed on a single
VM. Besides reducing the number of VMs that must be
maintained (and their accompanying hourly fees), this also
helps amortize federated VM initialization times.

Launching a VM took around 80 seconds in our test
scenario, resulting in a two-minute lower bound for our
prediction window. Figure 3a demonstrates the effects of
our cloud bursting scheme; the initial storage node handles
all the requests up until minute 80, where the predicted
fulfillment rate for the node falls below 0.95. A federated
VM is started in the public cloud, which begins servicing
query requests at minute 82 (indicated by a vertical dashed
line in the figure). Incoming queries from new clients are

6

redirected to the new VM until the original storage node
can accommodate more requests. This adds a small amount
of latency to the first request submitted by a new client, but
allows the storage node to have fine-grained control over
load balancing.

Figure 3b provides another perspective on our perfor-
mance results by illustrating the client-side latency experi-
enced when submitting queries to our private cloud and
to federated VMs. In this benchmark, the turnaround time
refers to the amount of time taken to submit a query and
receive a response back from the server. As one would
expect, EC2 turnaround times are higher, but the responses
stay predictable and consistent throughout the test.

4.3 Maintaining Index Consistency

When duplicating indexes across distributed resources, care
must be taken to ensure clients receive consistent results.
Indexes residing on federated VMs are updated in an
eventually consistent manner through a gossip protocol to
avoid overwhelming the network with state updates, where
nodes that issue requests most frequently will receive state
updates first. Each group of storage nodes elects a leader
node that receives graph state updates as a part of heartbeat
messages that are sent at regular intervals for failure detec-
tion. Heartbeats pass through the group until they reach
the leader node, where they are inspected to determine
whether the federated VMs require a major or minor update.
Minor updates represent changes to vertex metadata (such
as counts or block pointers on disk), but do not involve the
creation or deletion of edges or vertices. Major updates, on
the other hand, are required when new vertices or edges
must be added to the graph. If a major update is required,
it is pushed out immediately, whereas minor updates are
buffered and sent once 100 updates have accumulated or
three heartbeat intervals have passed. This approach helps
balance the amount of state transfers that must be com-
pleted, while also ensuring the data on the federated VMs
stays fresh.

To manage the state of virtual machines in the public
cloud, storage nodes acquire a lock on an administrative
dataset in Galileo that describes available VMs, which nodes
they are servicing queries for, and their vital statistics (load,
number of cores available, memory consumption, etc.). This
feature allows storage nodes to leverage available resources
in the public cloud without having to launch more VMs,
and enables decentralized coordination.

5 AGGREGATE GRAPH COMPACTION

While the main benefit behind our query evaluation strategy
is higher throughput, it also provides a unique opportunity
to optimize the memory footprint of our indexes. When
several storage nodes are projecting high query loads, they
can partition a single federated VM to share its resources.
However, this approach requires clients to identify which
parent storage node their query is intended for to avoid
needless processing across each metadata graph instance.
A better alternative that streamlines processing and re-
duces memory usage is to create aggregate metadata graphs.
Upon receiving a metadata graph from a storage node,

1000 (a) Query Throughput with Federated Evaluation
— : - : :

== With Federation
Private Cloud

800

600

400}

Average Queries/s

T
1
1
1
! A
200+ A
1
1
1
1
1

i i i
60 120 180 240 300
Time (m)

60 (b) Client-Side Turnaround Times

; |===Federated VM (EC2)
== Private Cloud

a
(=]
T

o
o

Average Turnaround Time (ms)
N w
o o
T T

-
o

i i i
60 120 180 240 300
Time (m)

Fig. 3. (a) Our test scenario with federated query evaluation enabled. A federated VM is started at minute 82 (marked with a dashed vertical line)
that takes on a portion of the storage load. Note that each federated VM can maintain multiple metadata graphs. (b) Client-side latency during the
test scenario. If either the original storage node or federated VM were overwhelmed with requests, queue sizes would increase, causing client-side

latency to increase significantly.

TABLE 1
Aggregate graph compaction from three different storage nodes. The
nodes managing graphs A and B belong to a group serving the same
spatial region (southeast USA), whereas graph C belongs to a node
serving a different region (northwest USA). The reduction in vertices
and edges (as a percentage of the total vertices/edges involved) is also
provided for the aggregate graphs.

Graph Vertices Edges
A 497340 747032
B 462471 640033
C 803273 1176227
AUB 635057 956846
(33.8%) (31.0%)
AuC 1049606 1566468
(19.3%) (18.6%)
AUBUC 1122240 1688159
(36.3%) (34.1%)

the federated VM must amend its leaves with a storage
node identifier. This process makes the graph paths unique,
allowing them to be mixed with paths from other metadata
graphs. Due to the data volumes managed by each storage
node, the likelihood of multiple graphs containing similar
paths is relatively high. As a result, creating aggregate meta-
data graphs serves to reduce the overall number of vertices
and edges required to represent the relationships between
data points, while also allowing federated VMs to dedicate
all of their processor cores to querying a single graph. This
technique also applies to similar indexes such as the k-d tree.
Table 1 contains graph statistics for three different storage
nodes, two of which are part of the same group (A and
B) while the third manages a completely different spatial
region. When graph A is merged with either of the two other
graphs, a significant reduction in both vertices and edges in
the aggregate graph is achieved.

6 CONCLUSIONS

This research identifies aspects of data management frame-
works that are amenable to federation in support of ad
hoc analysis. It also identifies when such federation must
occur and does so in a timely fashion by identifying trends
and seasonality in the data. Our solution is able to perform
targeted alleviation of query processing workloads and mi-
grate to federated VMs in the order of a few seconds.

The proposed approach conserves memory within pub-
lic cloud VMs by compacting metadata graphs from mul-
tiple private cluster storage nodes into a single federated
VM. This allows us to reduce the number of VMs for load
alleviation while also reducing monetary costs. Our gossip
protocol ensures that deviations in the state of the metadata
graph within the private cluster and the corresponding
federated VMs are quickly resolved — we achieve this by pri-
oritizing updates that impact accuracy of query evaluations
while minimizing the network traffic needed to preserve
consistency.

ACKNOWLEDGMENTS

This research has been supported by funding from the
US Department of Homeland Security’s Long Range pro-
gram (HSHQDC-13-C-B0018) and the US National Science
Foundation’s Computer Systems Research Program (CNS-
1253908).

REFERENCES

[1] D. Kossmann, T. Kraska, S. Loesing, S. Merkli, R. Mittal, and
F. Pfaffhauser, “Cloudy: A modular cloud storage system,” Proc.
VLDB Endow., vol. 3, no. 1-2, pp. 1533-1536, Sep. 2010.

[2] A.Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 2, pp. 35-40, 2010.

(3]

(4]
(5]

(6]
(7]

(8]

(9]

[10]

[11]

[12]

[13]

T. Bicer, D. Chiu, and G. Agrawal, “A framework for data-
intensive computing with cloud bursting,” in Cluster Computing,
2011 IEEE International Conference on, Sept 2011, pp. 169-177.
MongoDB Inc., “Mongodb,” http://www.mongodb.org/, 2015.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on. 1EEE, 2010, pp. 1-10.
Apache Software Foundation. (2015) Apache HBase. [Online].
Available: http:/ /hbase.apache.org

M. Malensek, S. Pallickara, and S. Pallickara, “Fast, ad hoc query
evaluations over multidimensional geospatial datasets,” Cloud
Computing, IEEE Transactions on, 2015.

——, “Exploiting geospatial and chronological characteristics in
data streams to enable efficient storage and retrievals,” Future
Generation Computer Systems, 2012.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels,
“Dynamo: Amazon’s highly available key-value store,” SIGOPS,
vol. 41, no. 6, pp. 205220, 2007.

G. Niemeyer. (2008) Geohash. [Online]. Available: http://en.
wikipedia.org/wiki/Geohash

B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422426,
1970.

R. J. Hyndman and Y. Khandakar, “Automatic time series fore-
casting: The forecast package for R,” Journal of Statistical Software,
vol. 27, no. 3, pp. 1-22, 7 2008.

M. Mao and M. Humphrey, “A performance study on the VM
startup time in the cloud,” in Cloud Computing, 2012 IEEE 5th
International Conference on. 1EEE, 2012, pp. 423-430.

8

Matthew Malensek is a Ph.D. student in the
Department of Computer Science at Colorado
State University. His research involves the de-
sign and implementation of large-scale dis-
tributed systems, data-intensive computing, and
cloud computing. Matthew received his Mas-
ters degree in Computer Science from Colorado
State University.

Sangmi Pallickara is an Assistant Professor in
the Department of Computer Science at Col-
orado State University. Her research interests
are in the area of large-scale scientific data
management, data mining, scientific metadata,
and data-intensive computing. She received her
Masters and Ph.D. degrees in Computer Sci-
ence from Syracuse University and Florida State
University, respectively.

Shrideep Pallickara is an Associate Professor
in the Department of Computer Science at Col-
orado State University. His research interests
are in the area of large-scale distributed sys-
tems, specifically cloud computing and stream-
ing. He received his Masters and Ph.D. degrees
from Syracuse University. He is a recipient of an
NSF CAREER award.

